日日夜夜精品,久久久直播,性抽视频播放,精品粉穴白虎无码

歡迎來到上海澤泉科技股份有限公司網(wǎng)站!
咨詢熱線

當(dāng)前位置:首頁  >  新聞資訊  >  2018澤泉植物表型技術(shù)Workshop通知(上海,3月16日)

2018澤泉植物表型技術(shù)Workshop通知(上海,3月16日)

更新日期:2018-03-12   |  點(diǎn)擊率:963

上海澤泉科技股份有限公司多年來秉承推進(jìn)中國生態(tài)環(huán)境改善、農(nóng)業(yè)興國的理念,服務(wù)涉及植物表型育種,植物生理生態(tài),水文水利,農(nóng)業(yè)工程等領(lǐng)域的科研和。為更好地服務(wù)全國科研用戶,促進(jìn)植物表型育種、表型技術(shù)推廣,同時(shí)促進(jìn)相關(guān)研究設(shè)施和平臺(tái)的建設(shè),上海澤泉科技股份有限公司將于2018年3月16日下午在上海孫橋現(xiàn)代農(nóng)業(yè)園區(qū)AgriPheno高通量植物表型平臺(tái)舉辦“2018澤泉植物表型技術(shù)Workshop”。Workshop內(nèi)容包括植物表型研究技術(shù)研究進(jìn)展交流、AgriPheno高通量植物表型平臺(tái)及科研項(xiàng)目介紹以及平臺(tái)參觀考察。

 

現(xiàn)向各單位植物研究、農(nóng)業(yè)建設(shè)領(lǐng)域科研人員發(fā)出誠摯邀請(qǐng),歡迎您出席本次workshop與參會(huì)者交流領(lǐng)域內(nèi)的科研進(jìn)展,期待您的光臨。

 

一、主辦單位:上海澤泉科技股份有限公司

 

二、會(huì)議時(shí)間與地點(diǎn)

時(shí)間:2018年3月16日下午

地點(diǎn):上海乾菲諾農(nóng)業(yè)科技有限公司(AgriPheno高通量植物表型平臺(tái)),上海市浦東新區(qū)沔北路185號(hào)孫橋現(xiàn)代農(nóng)業(yè)園C9-1

 

三、會(huì)議日程

時(shí)間

報(bào)告內(nèi)容及主講人

13:00-14:00

Plant Phenomics and   Image Analysis (植物表型組學(xué)與圖像分析)

主講:Ji Zhou, 周濟(jì),英國BBSRC Earlham Institute,University of East Anglia & 南京農(nóng)業(yè)大學(xué)表型交叉研究中心

14:05-14:45

Remote Sensing and IoT   for Phenomics(遙感和物聯(lián)網(wǎng)技術(shù)在表型研究中的應(yīng)用)

主講:Daniel Reynolds(周濟(jì)實(shí)驗(yàn)室, 英國BBSRC Earlham Institute)

14:50-15:30

Machine Learning for   Plant Phenomics (機(jī)器學(xué)習(xí)在植物表型中的應(yīng)用)

主講:Aaron Bostrom (周濟(jì)實(shí)驗(yàn)室, 英國BBSRC   Earlham Institute)

15:40-16:20

Introduction of AgriPheno   Plant Phenotyping Facility and Research Project (AgriPheno植物表型平臺(tái)介紹及科研項(xiàng)目進(jìn)展)

主講:Hong Zhang, 張弘, 上海澤泉科技股份有限公司

16:25-17:00

Engineering   Cost-effective Inligent Phenotyping Complete Set   Instrumentation/facilities for precise crop breeding (大宗作物表型篩選育種成套裝備、儀器與系統(tǒng))

主講:Liang Gong,貢亮,上海交通大學(xué)

 

四、參會(huì)須知

1、參會(huì)回執(zhí):請(qǐng)參會(huì)人員于3月14日前將參會(huì)回執(zhí)通過電子郵件發(fā)送至:vivi.xu@zealquest.com,或傳真。我們將根據(jù)參會(huì)回執(zhí)協(xié)助推薦住宿和安排參會(huì)事宜。掃描/點(diǎn)擊二維碼,填寫信息亦可參會(huì)。

3300.jpg

2、Workshop費(fèi)用:參會(huì)免費(fèi)。交通、食宿自理。

 

五、會(huì)務(wù)組

:徐靜萍,:vivi.xu@zealquest.com,:  分機(jī):8043

地址:上海市普陀區(qū)金沙江路1038號(hào)華大科技園2號(hào)樓8層  :200062

六、附件

附件1:2018澤泉植物表型技術(shù)Workshop 參會(huì)回執(zhí)

附件2:會(huì)場(chǎng)交通

附件3:報(bào)告摘要

 

上海澤泉科技股份有限公司

2018年3月12日

附件1:2018澤泉植物表型技術(shù)Workshop 回執(zhí)

工作單位

 

通信地址

 

 

傳真

 

 

姓名

性別

職稱/職務(wù)

手機(jī)

備注接送地鐵站

      
      
      
      
      
      
      
      

請(qǐng)于3月14日前將參會(huì)回執(zhí)通過電子郵件發(fā)送至:vivi.xu@zealquest.com,或傳真發(fā)送至。

 

附件2:會(huì)場(chǎng)交通

1.jpg
2.jpg

上海乾菲諾農(nóng)業(yè)科技有限公司

地址:上海市浦東新區(qū)沔北路185號(hào)孫橋現(xiàn)代農(nóng)業(yè)園C9-1

交通:地鐵16號(hào)線羅山路站,2號(hào)線廣蘭路站下車,我司安排車輛接送。具體信息可在百度地圖中搜索“上海乾菲諾農(nóng)業(yè)科技有限公司”。

附件3:報(bào)告摘要

Plant Phenomics and Image Analysis (植物表型組學(xué)與圖像分析)

主講Ji Zhou, 周濟(jì),英國BBSRC Earlham Institute,University of East Anglia, & 南京農(nóng)業(yè)大學(xué)表型交叉研究中心

With the maturation of high-throughput and low-cost genotyping platforms, the current bottleneck in breeding, c*tion and crop research lies in phenotyping and phenotypic analyses. Recent phenotyping technologies invented by industry and academia are capable of producing large image- and sensor-based data. However, how to effectively transform big data into biological knowledge is an immense challenge that urgently requires a cross-disciplinary effort. In the talk, I will introduce our research-based phenotyping platforms at Norwich Research Park, ranging from the sky to cells, including AirSurf (automated aerial analytic software), Phenospex (an in-field 3D laser scanning platform), CropQuant (a low-cost distributed crop monitoring system), SeedGerm (a machine-learning based seed germination device), Leaf-GP (an open-source software for quantifying growth phenotypes), and high content screening systems for cellular phenotype measurements. Through these examples, I will introduce our multi-scale phenomics solutions developed for different biological questions on bread wheat, brassica, and other plant species, including linking phenotypic analyses to the assessment of genes controlling performance-related traits, QTL analysis of yield potential, gene discovery using near isogenic lines (NILs), quantifying genotype-by-environment interactions (GxE) to assess environmental adaptation, etc. I will also talk about how to utilise open scientific and numeric libraries for data calibration, annotation, image analysis and phenotypic analyses.

 

● Remote Sensing and IoT for Phenomics(遙感和物聯(lián)網(wǎng)技術(shù)在表型研究中的應(yīng)用)

主講Daniel Reynolds(周濟(jì)實(shí)驗(yàn)室, 英國BBSRC Earlham Institute)

A high-level overview of remote sensing, Internet of Things (IoT) and how they are applied to Plant Phenomics. Latest remote sensing and IoT provide high-resolution and high-frequency environmental measurements when compared to traditional manual methods. Distributed sensor networks such as the CropQuant platform allow researchers to record the environment of in-field or indoor experiments without manual intervention, which allow the capture of dynamic environmental changes throughout key growing stages. The lecture will introduce the techniques and applications of IoT and remote sensing in plant phenomics, covering (1) what is IoT with respect to sensing networks, (2) the hardware available and suitable for IoT including digital and analogue sensors, (3) single-board computers and microcontrollers, (4) control software and interfacing with IoT devices, (5) data transmission and retrieval, and finally (6) the management of multiple devices and collation of remote data. The lecture will not cover technical details and mainly focus on the introduction of how remote sensing and IoT could be used for phenomics.

 

● Machine Learning for Plant Phenomics (機(jī)器學(xué)習(xí)在植物表型中的應(yīng)用)

主講 Aaron Bostrom (周濟(jì)實(shí)驗(yàn)室, 英國BBSRC Earlham Institute)

An introduction to machine learning and how to apply it in plant phenomics. Machine learning is a tool that has been gaining attention due to many advances in the last decade. This talk aims to provide a summary of machine learning techniques, simple and intuitive explanations and demonstrations about how machine learning has been applied to different real-world problems. In particular, generalisation and how to design training datasets and experimentation with machine learning in mind will be explained. The lecture will finish with some of Aaron’s current and previous work, and where machine learning have been applied to real world problems such as our AirSurf on lettuces yield prediction as well as SeedGerm software on seed germination measurements together with industrial leaders such as G’s Growers and Syngenta.

 

● Engineering Cost-effective Inligent Phenotyping Complete Set Instrumentation/facilities for precise crop breeding (大宗作物表型篩選育種成套裝備、儀器與系統(tǒng))

主講Liang Gong,貢亮,上海交通大學(xué)

It plays an important role for high-throughput phenotyping in cutting-edge crop breeding field, and this automation generates heterogeneous measuring data for subsequent meta-analyses, modeling, and ground-truth dataset building. Traditional researches focus on an individual instrument or data processing algorithms. We advocate that the crop breeeding issue has to be addressed with a systematic paradigm, ranging from building cost-effective infrastructure to leveraging crowd-sourcing applications, and to process standardization.The roadmap for conducting phenotyping-based breeding is depicted as, first, plant organ-specific phenotyping parameter index sets for crop breeding are optimally determined, and corresponding phenotyping instrumentation are introduced. Second, an entity-relationship data aggregation model is built to organize and present the phenotyping big data; Third, a paradigm of creating a phenotyping database is proposed to facilitate crop breeding. Finally, a formal GPEM database for constructing a crop breeding phenotyping database is established, which highlights the plant morphometric data retrieval and data mining. This data aggregation scheme provides an effective tool and exemplary template for dealing with big plant phenotyping data acquired by different devices and equipment under user-defined resolution. The case study for creating a GPEM phenotyping database is step-by-step investigated to show the feasibility and effectiveness of plant phenotyping big-data aggregation.

天堂在线最新a| 日韩成人 欧美| 久久久噜噜噜久久熟女色| 亚洲中文字幕无码久久2| 在线伊人免费网站| 99久久无码一区二区| ⅩX00久久精品| 精品99国产视频| 本网站五月丁香| 国产又长又大又粗| 久久国产精品无码4区| 五月丁香成人综合久久| 无码精品国产中文字幕| 日本A网址| 国产慕精品无码| 久久免费精品一区二区| 成年人网站视频91| 夜午一级| 大陆熟妇多毛| 日韩人妻aV中文字幕| 日本免费一区二区三区| 亚洲AV无码综合一区二区三区| 亚洲高清图香蕉视频| 久久久久国产电影观看| 亚洲AV综合日韩AV一区二区| 国产91熟女免费视频| 国产激情网站| 色欲婷婷禁久| 精品视频二区不卡国产| 99久久久无码国产精品九色| 狠狠色综合网站久久久| 国产精品中文字幕学院| 春色校园综合激情亚洲| 国产目拍亚洲精品| 天天摸夜夜添夜夜添国产| 极上人妻JULIA中文字幕在线| 国产亚洲欧美中文字幕| 亚洲AV无码久久精品成人小黄书| 亚洲无码中文字幕免费| 亚洲国产天堂三区二区软件下载 | 久久久一区无码|